KAIST, '신소재 발견–개발–최적화' 과정 통합한 AI 로드맵 제시
KAIST, '신소재 발견–개발–최적화' 과정 통합한 AI 로드맵 제시
  • 이성현 기자
  • 승인 2025.10.26 12:00
  • 댓글 0
이 기사를 공유합니다

AI가 신소재 발견–개발–최적화 전 주기에 걸쳐 혁신을 이끄는 주요 흐름

[충청뉴스 이성현 기자] 국내외 공동연구진이 AI가 자율 연구실 개념을 구현하고 로봇이 촉매 합성 실험을 수행하는 ‘AI 기반 촉매 탐색 플랫폼’을 통해 신소재 연구의 전 주기 활용 전략을 제시했다.

한국과학기술원(KAIST)은 신소재공학과 홍승범 교수 연구팀이 미국 드렉셀대학교, 노스웨스턴대학교, 시카고대학교, 테네시대학교와 공동연구를 통해 인공지능(AI)·머신러닝(ML)·딥러닝(DL) 기술이 신소재공학 전반에 미치는 영향을 종합적으로 분석한 리뷰 논문을 국제 학술지 'ACS Nano'에 게재했다고 26일 밝혔다.

홍승범 교수 연구팀은 소재 연구를 ‘발견–개발–최적화’의 세 단계로 구분하고, 각 단계에서 AI가 수행하는 역할을 구체적으로 설명했다.

소재 발견 단계에서는 AI가 새로운 구조를 설계하고 물질의 성질을 예측해, 수많은 후보 중 가장 유망한 물질을 신속히 찾아낸다.

개발 단계에서는 실험 데이터를 분석하고 자율 실험 시스템(Self-driving Lab)을 통해 AI가 실험 과정을 자동으로 조정함으로써 연구 기간을 단축한다.

최적화 단계에서는 AI가 시행착오를 거치며 스스로 최적의 조건을 학습하는 ‘강화학습’과, 적은 실험으로 가장 우수한 결과를 찾아내는 ‘베이지안 최적화’ 기술을 활용해 설계와 공정 조건을 자동으로 조정하고 성능을 높인다.

즉 AI는 수많은 재료 중에서 ‘가장 가능성 있는 후보’를 먼저 골라주고, 실험 과정에서 시행착오를 줄이며 마지막에는 스스로 실험 조건을 조정해 성능이 가장 좋은 조합을 찾아내는 ‘똑똑한 조수’ 역할을 한다.

논문은 또한 생성형 AI, 그래프 신경망(GNN), 트랜스포머 모델 등 첨단 기술이 AI를 단순한 계산 도구가 아닌 ‘생각하는 연구자’로 변화시키고 있음을 보여준다.

AI는 물리와 화학의 법칙을 스스로 학습해 새로운 소재를 상상하고 예측하며, 연구자의 ‘두 번째 두뇌’처럼 아이디어 제안부터 검증까지 함께 수행한다.

그러나 연구진은 AI가 제시하는 결과가 항상 정답은 아니며, 데이터 품질 불균형, 예측 결과 해석의 어려움, 이질적 데이터 통합 등 여전히 해결해야 할 과제들이 남아 있다고 지적했다.

이에 따라 앞으로는 AI가 물리학적 원리를 스스로 이해하고, 연구자가 그 과정을 투명하게 검증할 수 있는 기술이 함께 발전해야 한다고 강조했다.

논문에서는 또 연구자가 직접 실험 장비를 조작하지 않아도 AI가 실험 계획을 세우고 결과를 분석해, 다음 실험 방향까지 제안하는 ‘자율 실험실(Self-driving Lab)’과 AI가 촉매 합성 실험을 자동으로 설계·최적화하고 로봇이 수행하는‘AI 기반 촉매 탐색 플랫폼’에 대해 심층적으로 다뤘다.

특히 AI가 촉매 합성과 최적화 과정을 자동으로 수행해 연구 속도를 비약적으로 높이는 사례를 소개하며, 이러한 접근이 배터리 및 에너지 소재 개발로 확장될 가능성을 보여주었다.

홍승범 교수는 “이번 리뷰는 인공지능이 단순한 도구를 넘어 신소재공학 연구의 새로운 언어로 자리 잡고 있음을 보여준다”며 “KAIST 연구진이 제시한 로드맵은 향후 배터리·반도체·에너지 소재 등 국가 핵심 산업 분야 연구자들에게 중요한 길잡이가 될 것”이라고 밝혔다.

기사가 마음에 드셨나요?

충청뉴스 좋은 기사 후원하기


※ 소중한 후원금은 더 좋은 기사를 만드는데 쓰겠습니다.


댓글삭제
삭제한 댓글은 다시 복구할 수 없습니다.
그래도 삭제하시겠습니까?
댓글 0
댓글쓰기
계정을 선택하시면 로그인·계정인증을 통해
댓글을 남기실 수 있습니다.