[충청뉴스 이성현 기자] 국내 연구진이 추론 속도와 성능 등 두마리 토끼를 모두 잡은 AI 확산모델 신기술을 개발했다.
한국과학기술원(KAIST)은 전산학부 안성진 교수 연구팀이 딥러닝 분야 세계적 석학인 몬트리올 대학교 요슈아 벤지오(Yoshua Bengio) 교수와 인공지능 확산 모델의 추론-시간 확장성을 크게 개선하는 신기술을 개발했다고 20일 밝혔다.
이 기술은 인공지능의 학습 이후 추론 단계에서 더 많은 계산 자원을 효율적으로 활용함으로써 단순히 데이터나 모델 크기를 키우는 것으로는 해결할 수 없는 고난도 문제를 풀 수 있도록 돕는 핵심 AI 기술로 주목받고 있다.
이번 연구에서 연구팀은 몬테카를로 트리 탐색 기반의 새로운 확산 모델 추론 기법을 제안했다.
이 방법은 확산 과정 중 다양한 생성 경로를 트리 구조로 탐색하며 제한된 계산 자원으로도 높은 품질의 출력을 효율적으로 찾아낼 수 있도록 설계됐다. 이를 통해 기존 방법이 0%의 성공률을 보이던 ‘자이언트-스케일의 미로 찾기’ 태스크에서 100%의 성공률을 달성했다.
아울러 후속 연구에서는 제안한 방법론의 주요 단점인 느린 속도 문제를 대폭 개선하는 방법을 개발하는데 성공했다.
트리 탐색을 효율적으로 병렬화하여 비용을 최적화해 이전 방식 대비 최대 100배 빠른 속도로도 동등하거나 더 우수한 품질의 결과를 얻는 데 성공했다. 이는 제안한 방법론의 추론 능력과 실시간 적용 가능성을 동시에 확보했다는 점에서 큰 의미가 있다.
안성진 교수는 “이번 연구는 고비용 계산이 요구되던 기존 확산 모델의 한계를 근본적으로 극복한 기술”이라며 “지능형 로봇, 시뮬레이션 기반 의사결정, 실시간 생성 AI 등 다양한 분야에서 핵심 기술로 활용될 수 있을 것”이라고 말했다.

